Extracting Relevant Information from Samples

نویسنده

  • Naftali Tishby
چکیده

The information bottleneck is an information theoretic framework, extending the classical notion of minimal sufficient statistics, that finds concise representations for an ‘input’ random variable that are as relevant as possible for an ‘output’ variable. This framework has been used successfully in various supervised and unsupervised applications. However, its learning theoretic properties and justification remained unclear as it differs from standard learning models in several crucial aspects, primarily its explicit reliance on the joint input-output distribution. In practice, an empirical plug-in estimate of the underlying distribution has been used, so far without any finite sample performance guarantees. In this paper we present several formal results that address these difficulties. We prove several non-uniform finite sample bounds that show that it can provide concise representations with good generalization based on smaller sample sizes than needed to estimate the underlying distribution. Based on these results, we can analyze the information bottleneck method as a learning algorithm in the familiar performance-complexity tradeoff framework. In addition, we formally describe the connection between the information bottleneck and minimal sufficient statistics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ارائه مدلی برای استخراج اطلاعات از مستندات متنی، مبتنی بر متن‌کاوی در حوزه یادگیری الکترونیکی

As computer networks become the backbones of science and economy, enormous quantities documents become available. So, for extracting useful information from textual data, text mining techniques have been used. Text Mining has become an important research area that discoveries unknown information, facts or new hypotheses by automatically extracting information from different written documents. T...

متن کامل

Presenting a method for extracting structured domain-dependent information from Farsi Web pages

Extracting structured information about entities from web texts is an important task in web mining, natural language processing, and information extraction. Information extraction is useful in many applications including search engines, question-answering systems, recommender systems, machine translation, etc. An information extraction system aims to identify the entities from the text and extr...

متن کامل

DyVSoR: dynamic malware detection based on extracting patterns from value sets of registers

To control the exponential growth of malware files, security analysts pursue dynamic approaches that automatically identify and analyze malicious software samples. Obfuscation and polymorphism employed by malwares make it difficult for signature-based systems to detect sophisticated malware files. The dynamic analysis or run-time behavior provides a better technique to identify the threat. In t...

متن کامل

Geostatistical simulation of dyke systems in Sungun porphyry copper deposit, Iran

Post-mineralization activities may cause difficulties in the process of ore modeling in porphyry deposits. Sungun, NW Iran, is one of the porphyry copper deposits, in which dyke intrusions have made ore modeling more complicated than expected. Among different kinds of dykes, two types were chosen and the consequent geostatistical analyses were applied on. In this study, simple directional vario...

متن کامل

Extracting Relevant Structures with Side Information

The problem of extracting the relevant aspects of data, in face of multiple conflicting structures, is inherent to modeling of complex data. Extracting structure in one random variable that is relevant for another variable has been principally addressed recently via the information bottleneck method [15]. However, such auxiliary variables often contain more information than is actually required...

متن کامل

Qualitative Diagnostic Criteria into Objective Quantitative Signal Feature Classification

Predicting the epileptic seizure is challenging biomedical problem. EEG signal includes enormous information. Few relevant parameters are expected in the field of recognition and diagnostic purposes. Seizure detection and classification system has been designed and developed. The system uses computer based procedures to detect seizure and classified normal and abnormal subjects. Intelligent com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008